4 * Copyright (C) 1994 David Burren
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name(s) of the author(s) nor the names of other contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * This is an original implementation of the DES and the crypt(3) interfaces
33 * by David Burren <davidb@werj.com.au>.
35 * An excellent reference on the underlying algorithm (and related
38 * B. Schneier, Applied Cryptography: protocols, algorithms,
39 * and source code in C, John Wiley & Sons, 1994.
41 * Note that in that book's description of DES the lookups for the initial,
42 * pbox, and final permutations are inverted (this has been brought to the
43 * attention of the author). A list of errata for this book has been
44 * posted to the sci.crypt newsgroup by the author and is available for FTP.
47 * This file has a static version of des_setkey() so that crypt.o exports
48 * only the crypt() interface. This is required to make binaries linked
49 * against crypt.o exportable or re-exportable from the USA.
52 #include <sys/types.h>
55 extern unsigned long int md_ntohl(unsigned long int x
);
56 extern unsigned long int md_htonl(unsigned long int x
);
58 #define _PASSWORD_EFMT1 '_'
60 static unsigned char IP
[64] = {
61 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
63 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
64 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
67 static unsigned char inv_key_perm
[64];
68 static unsigned char key_perm
[56] = {
69 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
70 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
71 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
72 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
75 static unsigned char key_shifts
[16] = {
76 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
79 static unsigned char inv_comp_perm
[56];
80 static unsigned char comp_perm
[48] = {
81 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
82 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
83 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
84 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
88 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
91 static unsigned char u_sbox
[8][64];
92 static unsigned char sbox
[8][64] = {
94 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
95 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
96 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
97 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
100 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
101 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
102 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
103 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
106 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
107 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
108 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
109 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
112 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
113 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
114 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
115 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
118 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
119 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
120 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
121 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
124 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
125 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
126 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
127 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
130 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
131 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
132 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
133 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
136 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
137 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
138 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
139 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
143 static unsigned char un_pbox
[32];
144 static unsigned char pbox
[32] = {
145 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
146 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
149 static unsigned int bits32
[32] =
151 0x80000000, 0x40000000, 0x20000000, 0x10000000,
152 0x08000000, 0x04000000, 0x02000000, 0x01000000,
153 0x00800000, 0x00400000, 0x00200000, 0x00100000,
154 0x00080000, 0x00040000, 0x00020000, 0x00010000,
155 0x00008000, 0x00004000, 0x00002000, 0x00001000,
156 0x00000800, 0x00000400, 0x00000200, 0x00000100,
157 0x00000080, 0x00000040, 0x00000020, 0x00000010,
158 0x00000008, 0x00000004, 0x00000002, 0x00000001
161 static unsigned char bits8
[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
163 static unsigned int saltbits
;
165 static unsigned int *bits28
, *bits24
;
166 static unsigned char init_perm
[64], final_perm
[64];
167 static unsigned int en_keysl
[16], en_keysr
[16];
168 static unsigned int de_keysl
[16], de_keysr
[16];
169 static int des_initialised
= 0;
170 static unsigned char m_sbox
[4][4096];
171 static unsigned int psbox
[4][256];
172 static unsigned int ip_maskl
[8][256], ip_maskr
[8][256];
173 static unsigned int fp_maskl
[8][256], fp_maskr
[8][256];
174 static unsigned int key_perm_maskl
[8][128], key_perm_maskr
[8][128];
175 static unsigned int comp_maskl
[8][128], comp_maskr
[8][128];
176 static unsigned int old_rawkey0
, old_rawkey1
;
178 static unsigned char ascii64
[] =
179 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
180 /* 0000000000111111111122222222223333333333444444444455555555556666 */
181 /* 0123456789012345678901234567890123456789012345678901234567890123 */
184 ascii_to_bin(char ch
)
189 return(ch
- 'a' + 38);
193 return(ch
- 'A' + 12);
204 int i
, j
, b
, k
, inbit
, obit
;
205 unsigned int *p
, *il
, *ir
, *fl
, *fr
;
207 old_rawkey0
= old_rawkey1
= 0;
210 bits24
= (bits28
= bits32
+ 4) + 4;
213 * Invert the S-boxes, reordering the input bits.
215 for (i
= 0; i
< 8; i
++)
216 for (j
= 0; j
< 64; j
++) {
217 b
= (j
& 0x20) | ((j
& 1) << 4) | ((j
>> 1) & 0xf);
218 u_sbox
[i
][j
] = sbox
[i
][b
];
222 * Convert the inverted S-boxes into 4 arrays of 8 bits.
223 * Each will handle 12 bits of the S-box input.
225 for (b
= 0; b
< 4; b
++)
226 for (i
= 0; i
< 64; i
++)
227 for (j
= 0; j
< 64; j
++)
228 m_sbox
[b
][(i
<< 6) | j
] =
229 (u_sbox
[(b
<< 1)][i
] << 4) |
230 u_sbox
[(b
<< 1) + 1][j
];
233 * Set up the initial & final permutations into a useful form, and
234 * initialise the inverted key permutation.
236 for (i
= 0; i
< 64; i
++) {
237 init_perm
[final_perm
[i
] = IP
[i
] - 1] = i
;
238 inv_key_perm
[i
] = 255;
242 * Invert the key permutation and initialise the inverted key
243 * compression permutation.
245 for (i
= 0; i
< 56; i
++) {
246 inv_key_perm
[key_perm
[i
] - 1] = i
;
247 inv_comp_perm
[i
] = 255;
251 * Invert the key compression permutation.
253 for (i
= 0; i
< 48; i
++) {
254 inv_comp_perm
[comp_perm
[i
] - 1] = i
;
258 * Set up the OR-mask arrays for the initial and final permutations,
259 * and for the key initial and compression permutations.
261 for (k
= 0; k
< 8; k
++) {
262 for (i
= 0; i
< 256; i
++) {
263 *(il
= &ip_maskl
[k
][i
]) = 0;
264 *(ir
= &ip_maskr
[k
][i
]) = 0;
265 *(fl
= &fp_maskl
[k
][i
]) = 0;
266 *(fr
= &fp_maskr
[k
][i
]) = 0;
267 for (j
= 0; j
< 8; j
++) {
270 if ((obit
= init_perm
[inbit
]) < 32)
273 *ir
|= bits32
[obit
-32];
274 if ((obit
= final_perm
[inbit
]) < 32)
277 *fr
|= bits32
[obit
- 32];
281 for (i
= 0; i
< 128; i
++) {
282 *(il
= &key_perm_maskl
[k
][i
]) = 0;
283 *(ir
= &key_perm_maskr
[k
][i
]) = 0;
284 for (j
= 0; j
< 7; j
++) {
286 if (i
& bits8
[j
+ 1]) {
287 if ((obit
= inv_key_perm
[inbit
]) == 255)
292 *ir
|= bits28
[obit
- 28];
295 *(il
= &comp_maskl
[k
][i
]) = 0;
296 *(ir
= &comp_maskr
[k
][i
]) = 0;
297 for (j
= 0; j
< 7; j
++) {
299 if (i
& bits8
[j
+ 1]) {
300 if ((obit
=inv_comp_perm
[inbit
]) == 255)
305 *ir
|= bits24
[obit
- 24];
312 * Invert the P-box permutation, and convert into OR-masks for
313 * handling the output of the S-box arrays setup above.
315 for (i
= 0; i
< 32; i
++)
316 un_pbox
[pbox
[i
] - 1] = i
;
318 for (b
= 0; b
< 4; b
++)
319 for (i
= 0; i
< 256; i
++) {
320 *(p
= &psbox
[b
][i
]) = 0;
321 for (j
= 0; j
< 8; j
++) {
323 *p
|= bits32
[un_pbox
[8 * b
+ j
]];
333 unsigned int obit
, saltbit
;
336 if (salt
== old_salt
)
343 for (i
= 0; i
< 24; i
++) {
352 des_setkey(const unsigned char *key
)
354 unsigned int k0
, k1
, rawkey0
, rawkey1
;
357 if (!des_initialised
)
360 rawkey0
= md_ntohl(*(unsigned int *) key
);
361 rawkey1
= md_ntohl(*(unsigned int *) (key
+ 4));
363 if ((rawkey0
| rawkey1
)
364 && rawkey0
== old_rawkey0
365 && rawkey1
== old_rawkey1
) {
367 * Already setup for this key.
368 * This optimisation fails on a zero key (which is weak and
369 * has bad parity anyway) in order to simplify the starting
374 old_rawkey0
= rawkey0
;
375 old_rawkey1
= rawkey1
;
378 * Do key permutation and split into two 28-bit subkeys.
380 k0
= key_perm_maskl
[0][rawkey0
>> 25]
381 | key_perm_maskl
[1][(rawkey0
>> 17) & 0x7f]
382 | key_perm_maskl
[2][(rawkey0
>> 9) & 0x7f]
383 | key_perm_maskl
[3][(rawkey0
>> 1) & 0x7f]
384 | key_perm_maskl
[4][rawkey1
>> 25]
385 | key_perm_maskl
[5][(rawkey1
>> 17) & 0x7f]
386 | key_perm_maskl
[6][(rawkey1
>> 9) & 0x7f]
387 | key_perm_maskl
[7][(rawkey1
>> 1) & 0x7f];
388 k1
= key_perm_maskr
[0][rawkey0
>> 25]
389 | key_perm_maskr
[1][(rawkey0
>> 17) & 0x7f]
390 | key_perm_maskr
[2][(rawkey0
>> 9) & 0x7f]
391 | key_perm_maskr
[3][(rawkey0
>> 1) & 0x7f]
392 | key_perm_maskr
[4][rawkey1
>> 25]
393 | key_perm_maskr
[5][(rawkey1
>> 17) & 0x7f]
394 | key_perm_maskr
[6][(rawkey1
>> 9) & 0x7f]
395 | key_perm_maskr
[7][(rawkey1
>> 1) & 0x7f];
397 * Rotate subkeys and do compression permutation.
400 for (round
= 0; round
< 16; round
++) {
403 shifts
+= key_shifts
[round
];
405 t0
= (k0
<< shifts
) | (k0
>> (28 - shifts
));
406 t1
= (k1
<< shifts
) | (k1
>> (28 - shifts
));
408 de_keysl
[15 - round
] =
409 en_keysl
[round
] = comp_maskl
[0][(t0
>> 21) & 0x7f]
410 | comp_maskl
[1][(t0
>> 14) & 0x7f]
411 | comp_maskl
[2][(t0
>> 7) & 0x7f]
412 | comp_maskl
[3][t0
& 0x7f]
413 | comp_maskl
[4][(t1
>> 21) & 0x7f]
414 | comp_maskl
[5][(t1
>> 14) & 0x7f]
415 | comp_maskl
[6][(t1
>> 7) & 0x7f]
416 | comp_maskl
[7][t1
& 0x7f];
418 de_keysr
[15 - round
] =
419 en_keysr
[round
] = comp_maskr
[0][(t0
>> 21) & 0x7f]
420 | comp_maskr
[1][(t0
>> 14) & 0x7f]
421 | comp_maskr
[2][(t0
>> 7) & 0x7f]
422 | comp_maskr
[3][t0
& 0x7f]
423 | comp_maskr
[4][(t1
>> 21) & 0x7f]
424 | comp_maskr
[5][(t1
>> 14) & 0x7f]
425 | comp_maskr
[6][(t1
>> 7) & 0x7f]
426 | comp_maskr
[7][t1
& 0x7f];
432 do_des(unsigned int l_in
, unsigned int r_in
, unsigned int *l_out
,
433 unsigned int *r_out
, int count
)
436 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
438 unsigned int l
, r
, *kl
, *kr
, *kl1
, *kr1
;
439 unsigned int f
= 0, r48l
, r48r
;
444 } else if (count
> 0) {
460 * Do initial permutation (IP).
462 l
= ip_maskl
[0][l_in
>> 24]
463 | ip_maskl
[1][(l_in
>> 16) & 0xff]
464 | ip_maskl
[2][(l_in
>> 8) & 0xff]
465 | ip_maskl
[3][l_in
& 0xff]
466 | ip_maskl
[4][r_in
>> 24]
467 | ip_maskl
[5][(r_in
>> 16) & 0xff]
468 | ip_maskl
[6][(r_in
>> 8) & 0xff]
469 | ip_maskl
[7][r_in
& 0xff];
470 r
= ip_maskr
[0][l_in
>> 24]
471 | ip_maskr
[1][(l_in
>> 16) & 0xff]
472 | ip_maskr
[2][(l_in
>> 8) & 0xff]
473 | ip_maskr
[3][l_in
& 0xff]
474 | ip_maskr
[4][r_in
>> 24]
475 | ip_maskr
[5][(r_in
>> 16) & 0xff]
476 | ip_maskr
[6][(r_in
>> 8) & 0xff]
477 | ip_maskr
[7][r_in
& 0xff];
488 * Expand R to 48 bits (simulate the E-box).
490 r48l
= ((r
& 0x00000001) << 23)
491 | ((r
& 0xf8000000) >> 9)
492 | ((r
& 0x1f800000) >> 11)
493 | ((r
& 0x01f80000) >> 13)
494 | ((r
& 0x001f8000) >> 15);
496 r48r
= ((r
& 0x0001f800) << 7)
497 | ((r
& 0x00001f80) << 5)
498 | ((r
& 0x000001f8) << 3)
499 | ((r
& 0x0000001f) << 1)
500 | ((r
& 0x80000000) >> 31);
502 * Do salting for crypt() and friends, and
503 * XOR with the permuted key.
505 f
= (r48l
^ r48r
) & saltbits
;
509 * Do sbox lookups (which shrink it back to 32 bits)
510 * and do the pbox permutation at the same time.
512 f
= psbox
[0][m_sbox
[0][r48l
>> 12]]
513 | psbox
[1][m_sbox
[1][r48l
& 0xfff]]
514 | psbox
[2][m_sbox
[2][r48r
>> 12]]
515 | psbox
[3][m_sbox
[3][r48r
& 0xfff]];
517 * Now that we've permuted things, complete f().
527 * Do final permutation (inverse of IP).
529 *l_out
= fp_maskl
[0][l
>> 24]
530 | fp_maskl
[1][(l
>> 16) & 0xff]
531 | fp_maskl
[2][(l
>> 8) & 0xff]
532 | fp_maskl
[3][l
& 0xff]
533 | fp_maskl
[4][r
>> 24]
534 | fp_maskl
[5][(r
>> 16) & 0xff]
535 | fp_maskl
[6][(r
>> 8) & 0xff]
536 | fp_maskl
[7][r
& 0xff];
537 *r_out
= fp_maskr
[0][l
>> 24]
538 | fp_maskr
[1][(l
>> 16) & 0xff]
539 | fp_maskr
[2][(l
>> 8) & 0xff]
540 | fp_maskr
[3][l
& 0xff]
541 | fp_maskr
[4][r
>> 24]
542 | fp_maskr
[5][(r
>> 16) & 0xff]
543 | fp_maskr
[6][(r
>> 8) & 0xff]
544 | fp_maskr
[7][r
& 0xff];
549 des_cipher(const unsigned char *in
, unsigned char *out
, int salt
, int count
)
551 unsigned int l_out
, r_out
, rawl
, rawr
;
555 if (!des_initialised
)
560 memcpy(x
, in
, sizeof x
);
561 rawl
= md_ntohl(x
[0]);
562 rawr
= md_ntohl(x
[1]);
563 retval
= do_des(rawl
, rawr
, &l_out
, &r_out
, count
);
565 x
[0] = md_htonl(l_out
);
566 x
[1] = md_htonl(r_out
);
567 memcpy(out
, x
, sizeof x
);
572 xcrypt(const char *key
, const char *setting
)
575 unsigned int count
, salt
, l
, r0
, r1
, keybuf
[2];
576 unsigned char *p
, *q
;
577 static unsigned char output
[21];
579 if (!des_initialised
)
583 * Copy the key, shifting each character up by one bit
584 * and padding with zeros.
586 q
= (unsigned char *) keybuf
;
587 while ((q
- (unsigned char *) keybuf
) < sizeof(keybuf
)) {
588 if ((*q
++ = *key
<< 1))
591 if (des_setkey((unsigned char *) keybuf
))
594 if (*setting
== _PASSWORD_EFMT1
) {
597 * setting - underscore, 4 bytes of count, 4 bytes of salt
598 * key - unlimited characters
600 for (i
= 1, count
= 0; i
< 5; i
++)
601 count
|= ascii_to_bin(setting
[i
]) << (i
- 1) * 6;
603 for (i
= 5, salt
= 0; i
< 9; i
++)
604 salt
|= ascii_to_bin(setting
[i
]) << (i
- 5) * 6;
608 * Encrypt the key with itself.
610 if (des_cipher((unsigned char*)keybuf
, (unsigned char*)keybuf
, 0, 1))
613 * And XOR with the next 8 characters of the key.
615 q
= (unsigned char *) keybuf
;
616 while (((q
- (unsigned char *) keybuf
) < sizeof(keybuf
)) &&
620 if (des_setkey((unsigned char *) keybuf
))
623 strncpy((char *)output
, setting
, 9);
626 * Double check that we weren't given a short setting.
627 * If we were, the above code will probably have created
628 * wierd values for count and salt, but we don't really care.
629 * Just make sure the output string doesn't have an extra
633 p
= output
+ strlen((const char *)output
);
637 * setting - 2 bytes of salt
638 * key - up to 8 characters
642 salt
= (ascii_to_bin(setting
[1]) << 6)
643 | ascii_to_bin(setting
[0]);
645 output
[0] = setting
[0];
647 * If the encrypted password that the salt was extracted from
648 * is only 1 character long, the salt will be corrupted. We
649 * need to ensure that the output string doesn't have an extra
652 output
[1] = setting
[1] ? setting
[1] : output
[0];
660 if (do_des(0, 0, &r0
, &r1
, count
))
663 * Now encode the result...
666 *p
++ = ascii64
[(l
>> 18) & 0x3f];
667 *p
++ = ascii64
[(l
>> 12) & 0x3f];
668 *p
++ = ascii64
[(l
>> 6) & 0x3f];
669 *p
++ = ascii64
[l
& 0x3f];
671 l
= (r0
<< 16) | ((r1
>> 16) & 0xffff);
672 *p
++ = ascii64
[(l
>> 18) & 0x3f];
673 *p
++ = ascii64
[(l
>> 12) & 0x3f];
674 *p
++ = ascii64
[(l
>> 6) & 0x3f];
675 *p
++ = ascii64
[l
& 0x3f];
678 *p
++ = ascii64
[(l
>> 12) & 0x3f];
679 *p
++ = ascii64
[(l
>> 6) & 0x3f];
680 *p
++ = ascii64
[l
& 0x3f];
683 return((char *)output
);