# TODO(jfw): This is very non-Pythonic, it's pretty much just the
# BulletML reference ActionImpl translated to Python.
+PI_2 = math.pi * 2
+
class Action(object):
"""Running action implementation."""
if type == "absolute":
self.aiming = False
self.direction = (
- direction - self.owner.direction) % 360
+ direction - self.owner.direction) % PI_2
elif type == "relative":
self.aiming = False
self.direction = direction
self.direction = (
direction
+ self.owner.aim
- - self.owner.direction) % 360
+ - self.owner.direction) % PI_2
- while self.direction > 180:
- self.direction -= 360
- while self.direction < -180:
- self.direction += 360
+ while self.direction > math.pi:
+ self.direction -= PI_2
+ while self.direction < -math.pi:
+ self.direction += PI_2
self.direction /= self.direction_frames
elif isinstance(action, parser.Accel):
if self.target is None:
return self.direction
else:
- return math.degrees(
- math.atan2(self.target.x - self.x, self.y - self.target.y))
+ return math.atan2(self.target.x - self.x, self.y - self.target.y)
@property
def finished(self):
for action in self.actions:
created.extend(action.step())
- direction = math.radians(self.direction)
self.px = self.x
self.py = self.y
- self.x += self.mx + math.sin(direction) * self.speed
- self.y += self.my - math.cos(direction) * self.speed
+ self.x += self.mx + math.sin(self.direction) * self.speed
+ self.y += self.my - math.cos(self.direction) * self.speed
return created
from __future__ import division
+import math
+
from xml.etree.ElementTree import ElementTree
try:
return cls(element.get("type", default), NumberDef(element.text))
def __call__(self, params, rank):
- return (self.value(params, rank), self.type)
+ return (math.radians(self.value(params, rank)), self.type)
def __repr__(self):
return "%s(%r, type=%r)" % (