var MAX_MATRIX_SIZE = 256 * 256;
- function repeat(n, v) {
- var r = [];
- while (n--)
- r.push(v);
- return r;
- }
-
function createMatrix(i, j) {
- var m = [];
- while (i--)
- m.push(repeat(j, 0));
- return m;
+ return new Uint32Array(i * j);
}
function levenshteinMatrix(s, t) {
/** Calculate the Levenshtein edit distance matrix for two strings
+
+ The matrix is returned as a flat unsigned typed array.
- // Following http://en.wikipedia.org/wiki/Levenshtein_distance
+ Following http://en.wikipedia.org/wiki/Levenshtein_distance
*/
var m = s.length + 1;
var n = t.length + 1;
var d = createMatrix(m, n);
var i, j;
for (i = 1; i < m; ++i)
- d[i][0] = i;
+ d[n * i] = i;
for (j = 1; j < n; ++j)
- d[0][j] = j;
+ d[j] = j;
for (j = 1; j < n; ++j)
for (i = 1; i < m; ++i)
if (s[i - 1] === t[j - 1])
- d[i][j] = d[i - 1][j - 1];
+ d[n * i + j] = d[n * (i - 1) + j - 1];
else
- d[i][j] = 1 + Math.min(d[i - 1][ j ],
- d[ i ][j - 1],
- d[i - 1][j - 1]);
+ d[n * i + j] = 1 + Math.min(d[n * (i - 1) + j ],
+ d[n * i + j - 1],
+ d[n * (i - 1) + j - 1]);
return d;
}
- function editPath(m, s, t) {
+ function editPath(d, s, t) {
+ /** Given a Levenshtein result matrix, trace the shortest edit */
var path = []
var i = s.length;
var j = t.length;
+ var n = j + 1;
while (i || j) {
- var sub = (i && j) ? m[i - 1][j - 1] : Infinity;
- var del = i ? m[i - 1][j] : Infinity;
- var ins = j ? m[i][j - 1] : Infinity;
+ var sub = (i && j) ? d[n * (i - 1) + j - 1] : Infinity;
+ var del = i ? d[n * (i - 1) + j] : Infinity;
+ var ins = j ? d[n * i + j - 1] : Infinity;
if (sub <= ins && sub <= del) {
- if (m[i][j] !== m[i - 1][j - 1])
+ if (d[n * i + j] !== d[n * (i - 1) + j - 1])
path.push(["sub", i - 1, t[j - 1]]);
--i; --j;
} else if (ins <= del) {
return path;
}
- function applyEdits(edits, s, t) {
+ function applyEdits(edits, s) {
+ /** Apply the list of edits to s */
var i;
for (i = 0; i < edits.length; ++i) {
var edit = edits[i];
}
function slowLerp(a, b, p) {
- var m = levenshteinMatrix(a, b);
- var edits = editPath(m, a, b);
+ /** Interpolate between two strings slowly
+
+ This interpolation algorithm applys a partial edit of one
+ string into the other. This produces nice looking results,
+ but can take a significant amount of time and memory to
+ compute the edits. It is not recommended for strings
+ longer than a few hundred characters.
+ */
+ var edits = editPath(levenshteinMatrix(a, b), a, b);
var partial = edits.slice(0, Math.round(p * edits.length));
- return applyEdits(partial, a, b);
+ return applyEdits(partial, a);
}
function fastLerp(a, b, p) {
+ /** Interpolate between two strings very quickly
+
+ This interpolation algorithm progressively replaces the
+ front of one string with another. This approach is fast
+ but does not look good when the strings are similar.
+ */
var alen = Math.round(a.length * p);
var blen = Math.round(b.length * p);
return b.substring(0, blen) + a.substring(alen, a.length);
a = a.toString();
b = b.toString();
var n = a.length * b.length;
+ // TODO: if both strings are integers, do an integer lerp.
+ // TODO: if both strings are numbers, do a numeric lerp.
return (n && n < MAX_MATRIX_SIZE)
? slowLerp(a, b, p)
: fastLerp(a, b, p);